Docosahexaenoic Acid Inhibits Helicobacter pylori Growth In Vitro and Mice Gastric Mucosa Colonization
نویسندگان
چکیده
H. pylori drug-resistant strains and non-compliance to therapy are the major causes of H. pylori eradication failure. For some bacterial species it has been demonstrated that fatty acids have a growth inhibitory effect. Our main aim was to assess the ability of docosahexaenoic acid (DHA) to inhibit H. pylori growth both in vitro and in a mouse model. The effectiveness of standard therapy (ST) in combination with DHA on H. pylori eradication and recurrence prevention success was also investigated. The effects of DHA on H. pylori growth were analyzed in an in vitro dose-response study and n in vivo model. We analized the ability of H. pylori to colonize mice gastric mucosa following DHA, ST or a combination of both treatments. Our data demonstrate that DHA decreases H. pylori growth in vitro in a dose-dependent manner. Furthermore, DHA inhibits H. pylori gastric colonization in vivo as well as decreases mouse gastric mucosa inflammation. Addition of DHA to ST was also associated with lower H. pylori infection recurrence in the mouse model. In conclusion, DHA is an inhibitor of H. pylori growth and its ability to colonize mouse stomach. DHA treatment is also associated with a lower recurrence of H. pylori infection in combination with ST. These observations pave the way to consider DHA as an adjunct agent in H. pylori eradication treatment.
منابع مشابه
Curcumin Inhibits Gastric Inflammation Induced by Helicobacter Pylori Infection in a Mouse Model
Helicobacter pylori (H. pylori) infection triggers a sequence of gastric alterations starting with an inflammation of the gastric mucosa that, in some cases, evolves to gastric cancer. Efficient vaccination has not been achieved, thus it is essential to find alternative therapies, particularly in the nutritional field. The current study evaluated whether curcumin could attenuate inflammation of...
متن کاملHuman embryonic gastric xenografts in nude mice: a new model of Helicobacter pylori infection.
In vitro or animal models have been used to investigate the pathogenesis of Helicobacter pylori infection. However, extrapolation to humans of results obtained with these heterologous models remains difficult. We have developed a new model for the study of H. pylori infection that uses human entire embryonic stomachs engrafted in nude mice. At 80 days after implantation, 22 of these xenografts,...
متن کاملCatechins and Sialic Acid Attenuate Helicobacter pylori-Triggered Epithelial Caspase-1 Activity and Eradicate Helicobacter pylori Infection
The inflammasome/caspase-1 signaling pathway in immune cells plays a critical role in bacterial pathogenesis; however, the regulation of this pathway in the gastric epithelium during Helicobacter pylori infection is yet to be elucidated. Here, we investigated the effect of catechins (CAs), sialic acid (SA), or combination of CA and SA (CASA) on H. pylori-induced caspase-1-mediated epithelial da...
متن کاملUrsodeoxycholic acid does not interfere with in vivo Helicobacter pylori colonization.
A low frequency of Helicobacter pylori in the gastric mucosa of patients with alkaline gastritis has been reported. At the same time, it can be noted that the growth of bacteria can be inhibited by bile acids. We studied 40 patients with chronic gastritis related to Helicobacter pylori in order to determine the effect of ursodeoxycholic acid on this infection. Diagnoses of the infection and the...
متن کاملHelicobacter pylori pore-forming cytolysin orthologue TlyA possesses in vitro hemolytic activity and has a role in colonization of the gastric mucosa.
Hemolysins have been found to possess a variety of functions in bacteria, including a role in virulence. Helicobacter pylori demonstrates hemolytic activity when cultured on unlysed blood agar plates which is increased under iron-limiting conditions. However, the role of an H. pylori hemolysin in virulence is unclear. Scrutiny of the H. pylori 26695 genome sequence suggests the presence of at l...
متن کامل